If it's not what You are looking for type in the equation solver your own equation and let us solve it.
186=4.9t^2
We move all terms to the left:
186-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+186=0
a = -4.9; b = 0; c = +186;
Δ = b2-4ac
Δ = 02-4·(-4.9)·186
Δ = 3645.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{3645.6}}{2*-4.9}=\frac{0-\sqrt{3645.6}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{3645.6}}{2*-4.9}=\frac{0+\sqrt{3645.6}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| 4x+8=8x+3 | | 2x-11=9+12x | | 3x+8=444x-33 | | X^2-y^2=77 | | x28=24 | | 60-10n=0 | | 6-2x+2+5x=12+x+4= | | 531xB/49000=15.08 | | 3/10*x=21 | | 21=6p+3 | | 2k+9=13 | | 1/2s=3/4 | | y=1.05*1+3.10 | | (5x-7)+(7x-15)=180 | | y’=y-0.1y | | 40/j=5 | | -2=p(6)^2 | | 3{x-5}=7x+12 | | 40x2-13x+55=0 | | 4x+5x=270 | | 56–(7–x)=53 | | (+x^2-8x-5x+40)(x+2)=0 | | (x-5)(x-8)(x+2)=0 | | -4+4+5a=6+4 | | F(x)=4x^2+3x+5 | | y=3(4*3-5) | | (X)=3x²-20x+100 | | |x-12|=|x-4| | | 5x6/2=x-5 | | 100=25(1+d/3) | | 0.2(x–1)+0.5(x–9)=3 | | 504/n=28 |